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ABSTRACT

These notes provide a detailed derivation of the equation for a normal section curve on an
ellipsoid and from this equation a technique for computing the arc length along a normal
section curve is developed. Solutions for the direct and inverse problems of the normal
section on an ellipsoid are given and MATLAB functions are provided showing the

algorithms developed.

INTRODUCTION

In geodesy, the normal section curve is a plane curve created by intersecting a plane
containing the normal to the ellipsoid (a normal section plane) with the surface of the
ellipsoid, and the ellipsoid is a reference surface approximating the true shape of the Earth.
In general, there are two normal section curves between two points on an ellipsoid, a fact
that will be explained below, so the normal section curve is not a unique curve. And the
distance along a normal section curve is not the shortest distance between two points.

The shortest distance is along the geodesic, a unique curve on the surface defining the
shortest distance, but the difference in length between the normal section and a geodesic

can be shown to be negligible in all practical cases.

The azimuth of a normal section plane between two points on an ellipsoid can be easily
determined by coordinate geometry if the latitudes and longitudes of the points are

expressed in a local Cartesian coordinate system — this will be explained in detail below.

The distance along a normal section curve can be determined by numerical integration

once the polar equation of the curve is known. And the derivation of the polar equation of
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a normal section curve is developed in detail by first proving that normal sections of
ellipsoids are in fact ellipses, then deriving Cartesian equations of the ellipsoid and the
normal section in local Cartesian coordinates and finally transforming the local Cartesian
coordinates to polar coordinates. The differential equation for arc length (as a function of
polar coordinates) is derived and a solution using a numerical technique known as

Romberg integration is developed for the arc length along a normal section curve.

The azimuth of the normal section as a function of Cartesian coordinates); the polar
equation of the normal section curve; and the solution of the arc length using Romberg

integration are the core components of solutions of the direct and inverse cases of the

normal sections on an ellipsoid. These are fundamental geodetic operations and can be
likened to the equivalent operations of plane surveying; radiations (computing coordinates
of points given bearings and distances radiating from a point of known coordinates) and
joins; (computing bearings and distances between points having known coordinates). The
solution of the direct and inverse cases of the normal section are set out in detail and

MATLAB functions are provided.

THE ELLIPSOID

Figure 1: The reference ellipsoid

In geodesy, the ellipsoid is a surface of revolution created by rotating an ellipse (whose
major and minor semi-axes lengths are a and b respectively and a > b) about its minor
axis. The ¢,A curvilinear coordinate system is a set of orthogonal parametric curves on
the surface — parallels of latitude ¢ and meridians of longitude A with their respective

reference planes; the equator and the Greenwich meridian.
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Longitudes are measured 0° to £180° (east positive, west negative) from the Greenwich
meridian and latitudes are measured 0° to £90° (north positive, south negative) from the
equator. The z,y,z geocentric Cartesian coordinate system has an origin at O, the centre
of the ellipsoid, and the z-axis is the minor axis (axis of revolution). The 2Oz plane is the
Greenwich meridian plane (the origin of longitudes) and the xOy plane is the equatorial

plane.

The positive z-axis passes through the intersection of the Greenwich meridian and the
equator, the positive y-axis is advanced 90° east along the equator and the positive z-axis

passes through the north pole of the ellipsoid.
The Cartesian equation of the ellipsoid is

£yt
a2 + b_2 =1 (1)

where a and b are the semi-axes of the ellipsoid (a > b).
The first-eccentricity squared e’ and the flattening f of the ellipsoid are defined by

2 2
2 CL—b

¢ =——=f(2-f)

b2 (1_f>2 _1—62

PROOF THAT NORMAL SECTION CURVES ARE ELLIPSES

Normal section curves are plane curves; i.e., curves on the surface of the ellipsoid created
by intersecting the surface with a plane; and this plane (the normal section plane) contains

the normal to the surface at one of the terminal points.

A meridian of longitude is also a normal section curve and all meridians of longitude on

the ellipsoid are ellipses having semi-axes a and b (a > b) since all meridian planes — e.g.,

Greenwich meridian plane zOz and the meridian plane pOz containing P — contain the z-

axis of the ellipsoid and their curves of intersection are ellipses (planes intersecting surfaces
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create curves of intersection on the surface). This can be seen if we let p” = 2" + ¢ in

equation (1) which gives the familiar equation of the (meridian) ellipse
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Figure 2: Meridian ellipse

In Figure 2, ¢ is the latitude of P (the angle between the equator and the normal), C'is
the centre of curvature and PC'is the radius of curvature of the meridian ellipse at P. H is

the intersection of the normal at P and the z-axis (axis of revolution).

The only parallel of latitude that is also a normal section is the equator. And in this

unique case, this normal section curve (the equator) is a circle. All parallels of latitude on

the ellipsoid are circles created by intersecting the ellipsoid with planes parallel to (or

coincident with) the Oy equatorial plane. Replacing z with a constant C'in equation (1)
gives the equation for circular parallels of latitude

2

$2+y2:a2[1_§_2:p2 (OSCS[), CL>b) (5)

All other curves on the surface of the ellipsoid created by intersecting the ellipsoid with a

plane are ellipses. And this general statement covers all normal section planes that are not

meridians or the equator. This can be demonstrated by using another set of coordinates

z',y’, 2" that are obtained by a rotation of the z,y,z coordinates such that

/
X

T Ty T N3
I _
y'|=Rly where R =|r, n, n,
P Z T3 T3p T

where R is an orthogonal rotation matrix and R~ = R’ so
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X X

z z T T Ty
_ =11 7 /
=R |y and |y|=|n, n, T [|Y
P Tz Ty Tzl

2 12 2. 12 212

2 11 11 I,
TT=1T Y T2 20052y + 202 + 2 Yz

2 2 12 2 12 2 12 11 11 I,
Y =TT Ty T2 2T XY+ 21,10 4 21T,y 2

2 12 2 /2 2 12

. . 2 ! ! !/ .1
giving 20 =% gy T2 21y 2r1 T2+ 21y 2

2ty = (7”121 + ﬁé)x/2 + (7521 + 7"222)?//2 + (T321 + T322>Z/2 + 2(711751 + 7“127“22>x/y/
+2(711r31 + 7’127’32>$'Z/ +2 (751T31 + 7’227’32)y’z’

Substituting into equation (1) gives the equation of the ellipsoid in z’,7’,2" coordinates

1 )2 () )y () 2 2 (e, )2y

a’ |42 (rllriﬂ + 7”127’32)1’/,2/ + 2(51%1 + 7§2r32)ylzl

1

+b_2{7“123x/2 + 7“223]/2 + 7"3233,2 + 21,3y 4 21y 27“237“333//} =1 (6)

In equation (6) let 2’ = C, where C, is a constant. The result will be the equation of a

curve created by intersecting an inclined plane with the ellipsoid, i.e.,

2 2 2 2 2 2
.+ r ., + 1T 7.7, ., + 7 T
11 12 1 12 11721 12722 13°2 /.7 21 22 2 12
a

a b a b b
+{2C, (rmy + namyy + gy )f 2 4+ {20, (mymyy + mryy + 1357 ) Y
= 1-C/ {n + 1 + 153} (7)

This equation can be expressed as
Az"” +2Hx"y' + By"” + D2’ + By’ =1 (8)

where it can be shown that AB — H* > 0, hence it is the general Cartesian equation of an
ellipse that is offset from the coordinate origin and rotated with respect to the coordinate
axes (Grossman 1981). Equations of a similar form can be obtained for inclined planes

' = C, and y' = C,, hence we may say, in general, inclined planes intersecting the

ellipsoid will create curves of intersection that are ellipses.
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NORMAL SECTION CURVES BETWEEN P, AND P, ON THE ELLIPSOID
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Figure 3: Normal section curves between P, and P, on the ellipsoid

Figure 3 shows P, and P, on the surface of an ellipsoid. The normals at P, and P, (that lie
in the meridian planes ONP H and ONP,H, respectively) cut the rotational axis at H
and H,, making angles ¢ ,¢, with the equatorial plane of the ellipsoid. These are the
latitudes of P and P, respectively.

1 2

The plane containing the ellipsoid normal at P, and also the point P, intersects the

surface of the ellipsoid along the normal section curve PFP,. The reciprocal normal section
curve P P (the intersection of the plane containing the normal at P,, and also the point
P with the ellipsoidal surface) does not in general coincide with the normal section curve

PP, although the distances along the two curves are, for all practical purposes, the same.
Hence there is not a unique normal section curve between P, and P, , unless both P and

P, are on the same meridian or both are on the equator.
The azimuth «, , is the clockwise angle (0° to 360°) measured at P, in the local horizon
plane from north (the direction of the meridian) to the normal section plane containing P, .

The azimuth «,, is the azimuth of the normal section plane P, P, measured at P, .
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LOCAL CARTESIAN COORDINATES

Figure 4 shows a local Cartesian coordinate system E,N,U with an origin at P on the
reference ellipsoid with respect to the geocentric Cartesian system z,y,z whose origin is a

the centre of the ellipsoid

Figure 4: z,y,z geocentric Cartesian and F,N, U local Cartesian coordinates

Geocentric z,y,z Cartesian coordinates are computed from the following equations

T = I COS ) COS A
y = v cos¢sin A (9)
z = V(1—62>singb

where v = PH in Figure 4 is the radius of curvature in the prime vertical plane and

a
V=
J1—e*sin® ¢

The origin of the local E,N, U system lies at the point P (qb A ) The positive U-axis is

07770

(10)

coincident with the normal to the ellipsoid passing through P and in the direction of
increasing radius of curvature v. The N-U plane lies in the meridian plane passing
through P and the positive N-axis points in the direction of North. The FE-U plane is
perpendicular to the N-U plane and the positive E-axis points East. The E-N plane is

often referred to as the local geodetic horizon plane.

Geocentric and local Cartesian coordinates are related by the matrix equation

U T — 1,
E :Rm Y=Y, (11)
N z— 2z,
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where z, 7,2, are the geocentric Cartesian coordinates of the origin of the E,N, U system

and R, is a rotation matrix derived from the product of two separate rotation matrices.

cosg, 0 sing,|| cos), sin), O
R, =RR, = 0 1 0 ||—sin), cosA, O (12)
—sing, 0 cos@, 0 0 1

The first, R, (a positive right-handed rotation about the z-axis by \) takes the z,y,z axes
to z/,y',2'. The z'-axis is coincident with the z-azis and the z’-y’ plane is the Earth's
equatorial plane. The z’-y' plane is the meridian plane passing through P and the y’-axis

is perpendicular to the meridian plane and in the direction of East.

X
/N\e
00‘5;\)/. ”\%@'
Y N\ %‘N«\r\” y z’ cosA\  sinA Oflz
z(2) & \ S ’ )
o L Yy |=|—sinA cosA Olly
}\‘ @) \3.
NG Z 0 0 1|z
v o

The second R, (a rotation about the y-axis by ¢ ) takes the z’,¢',z" axes to the 2”,y", 2"
axes. The z”-axis is parallel to the U-axis, the y”-axis is parallel to the F-axis and the

2"-axis is parallel to the N-axis.

z
|
" . /
N T cos¢p 0 sing||z
y// — 0 1 0 y/
s 2" —sing 0 cos¢||z
i A ®
z' ‘ ¢ N e ¢ RO
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Performing the matrix multiplication in equation (12) gives

Cos @, cos N,  cos@g,sin), sing,
R, =| —sin) cos \, 0 (13)
—sing, cos )\, —sing,sin)\, cos@,
Rotation matrices formed from rotations about coordinate axes are often called Euler

rotation matrices in honour of the Swiss mathematician Léonard Euler (1707-1783). They

are orthogonal, satisfying the condition R"R =1 (i.e., R™' =R").

A re-ordering of the rows of the matrix R, gives the transformation in the more usual

form FE,N,U

E T — I,
Ni=Rly—y, (14)
U z— 2,
—sin )\, COS A\, 0
where R =|—sin@,cos\, —sing,sin), cos@, (15)

COsS @, Cos N\,  cos@g,sin), sing,

From equation (14) we can see that coordinate differences AE = E, — E,, AN =N, — N,
and AU =U, —U, in the local geodetic horizon plane are given by

AE Az
AN|=R|Ay (16)
AU Az

where Az =z, —1x., Ay=y —y and Az =z — 2 are geocentric Cartesian coordinate

differences.

NORMAL SECTION AZIMUTH ON THE ELLIPSOID

The matrix relationship given by equation (16) can be used to derive an expression for the
azimuth of a normal section between two points on the reference ellipsoid. The normal
section plane between points P, and P, on the Earth's terrestrial surface contains the
normal at point F,, the intersection of the normal and the rotational axis of the ellipsoid
at H, (see Figure 3) and P,. This plane will intersect the local geodetic horizon plane in a

line having an angle with the north axis, which is the direction of the meridian at F,.
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This angle is the azimuth of the normal section plane F, — P, denoted as o, and will have

components AE and AN in the local geodetic horizon plane. From plane geometry

AFE

tan Oéw = m (17)
By inspection of equations (15) and (16) we may write the equation for normal section
azimuth between points P, and F, as
—Azsin A\ + A A
tanay, = AFE _ ‘ x sin l—lj yc'os ) (18)
AN  —Azsing cos\ — Aysing sin\ + Azcos ¢,
where Az =z, —z , Ay =y, —y, and Az =2, — 2z
EQUATION OF THE ELLIPSOID IN LOCAL CARTESIAN COORDINATES
The Cartesian equation of the ellipsoid is given by equation (1) as
x? +y2 Z?
! (19)
and multiplying both sides of equation (19) by a® gives
aQ
2+ + b—Qz2 =a’ (20)

2
Re-arranging equation (3) gives Z_Q = ¢’? +1 and substituting this result into equation (20)

and re-arranging gives an alternative expression for the Cartesian equation of an ellipsoid

as

2ty +27 4% —ad’ =0 (21)

We now find expressions for z*,4* and z* in terms of local Cartesian coordinates that
when substituted into equation (21) and simplified will give the equation of the ellipsoid in

local Cartesian coordinates. The relevant substitutions are set out below.

The relationship between geocentric and local Cartesian coordinates is given by equation

(14) as

E T—x,
N|=R|y—y, (22)
U z— 2,
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where the orthogonal rotation matrix R is given by equation (15) as

T Te i S )‘0 cos )‘o 0
R=\n, mn, n,/=|—-sing,cos) —sing sin) cosq,
Ty Ty Ta COSP, cos A, cos@ sin)  sing,

and

T, =V, COS P, COS A\
Y, =V, COS @, sin |

_ 2\
z, =V, (1—6 )sm X
with the radius of curvature of the prime vertical section

a
Vo =
2 s 2
\/l—e sin” ¢,

Re-arranging equation (22) gives

T FE T,
-1
y|=R |N|+|y,
2 U Z,
where
711 751 731
-1 _ pT

R =R _7"12 7‘22 7“32
713 753 753

Expanding equation (26) gives

$:7"11E+7'21N+7"31U+x0
y:7’12E—|—7“22N+7"32U+y0
Z = 7’13E+7’23N+T33U+z0

and

o’ =B + 1y N* + 1 U” + 21,1, EN + 21, 1, EU + 21, 1, NU
2
+ o + 27“11Ex0 + 27‘21Nx0 + 27"31Ux0
y' =B+ N+ 1 U + 21,1, EN + 21,1, BU + 21,1, NU

+yy + 21, By, + 21, Ny, + 21,0y,
2* :7’123E2 +7’22N2 —|—7’323U2 +2r.rn. EN +2r.r. EU +2r.rn. NU

13723 13733 23733

+ zg + 27"13Ez0 + 27“23Nz0 + 27‘33Uz0
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with

o by 2 = () B (o )N () ) U
+2(r7’ +r,n, )EN

11°21 12722 13723

+2<r Ty 1Ty T 1T )EU

11°31 13733

-1-2(7"7" +nr.r., +1n." )NU

2131 2232 2333
2 2 2
+x, Y, T2
+2(n,2, + 1Y 702

1170

E
+2(n,3, + 1,9, + 1547 )N
U

2170

—1—2(7‘ T, + 7Y, + 7’3320>

3170

(30)

Now using the equivalences for 7,7, ,etc given in equation (23), certain terms in equation

117

(30) can be simplified as
4 = sin )+ cos” ), = 1
7521 + 7522 + 7’223 = sin” ?, (cos2 A, T+ sin’ )\0) + cos’ ¢, =1

41 4l = cos’ @, (cos2 A, + sin’ )\O) +sin’ ¢, =1

and
T\ Ty Tyl + 1Ty = SinA sing cos ) — cos A sing sin A\ + 0
=0
Ty LT, LT, = —sin cos @, cos A, + cos A cos @ sin A + 0
=0
o 2 o . 9 .
Ty Ty Ty,  ThgTyy = — SIN G COS P €OS™ | — sin @ cos @, sin” \| + cos ¢, sin ¢,

= —sin¢, cos @, (COS2 A+ sin’ )\0) + cos @, sin @,
=0

Substituting these results into equation (30) gives

2

Py + =B+ N+U oy + 2
+2(n,3 + 1, + 1,7 ) B

11770

+2(n,3, + 1,9, + 152 )N

2170

+ 2 <r31x0 + r32y0 + T33ZO>U (31)
012
Using equation (24) and noting that equation (25) can be re-arranged as 1— e’ sin’ ¢, = =

0

we have
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a2+ Y + 2 =1 cos’ ¢, (cos2 A, + sin® )\O) + v (1 —é’ )2 sin” ¢,
= v} cos’ ¢, + V. sin’ ¢, (1 —2¢* + e4>
= 12 cos’ ¢, + v sin’ ¢, — 2ve’ sin’ @, + vle’ sin® ¢,
=2 — 202" sin’ ¢, + vle' sin’ ¢,
= (1 — ¢’ sin’ ¢0) —vie’sin® ¢, (1 - 62)

it (a1 @)

From equations (31), (23) and (24) we have

T, 1LY, Tz, = —V, c0sg, cos A sin A\, + v, cos @, sin A cos A + 0
=0
_ . 2 o . . 9

T, T, + 1Y, T T2, = —V, COS @, sin @, cos” \| — v, sin @, cos @, sin” )|

+v, (1 — 62) sin ¢, cos ¢,
= —V, Cos @, sin @, (C082 At sin’ A — 1+ 62)

02 :
= —V,€" COoS P, sin g,
and

TyTo 1Y, + T2, = Y, cos’ ?, cos’ A T, cos’ ®, sin’ A TV, (1 — e2> sin’ ?,
=v, cos’ b, TV, (1 — e2> sin’ ?,
=v, cos’ b, TV, sin’ ®, — V0€2 sin’ ?,
=, (1 — ¢’ sin’ qu)
= a2
Substituting these results into equation (31) gives
4y +2=E+N+U +V§ <1—€2 sin2¢0>—1/§e2 sin2¢0<1—62>
— 2u,¢” sin ¢, cos N + 2v, (1 — €’ sin” ¢, ) U (32)

Using the expression for z* given in equation (29), the term e’*2” in equation (21) can be

expressed as

et = 6/2{’/'123E2 +7“223N2 +T323U2 +2r.r. EN +2r.r. EU +2r. . NU

13723 13733 23" 33 (33)

2
+z, + 27‘13Ez0 + 27"23Nz0 + 27“33Uzo}

where
2 AN 2 2 402 a2,
r,=0; 1, =cos ¢; 1, =sin"¢;
27“131“23 = (; 27’137’33 =0 27“237"33 = 2cos gbo sin qﬁo;

2
2 21 2 2
z, =V, (1 e) sin” ¢;

2r.z =0; 2r.z :2yo(1—62)cos¢051n¢0; 2r..z :2y0(1—62)sin2¢0

1370 2370 3370
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and equation (33) can be expressed as
e’ =e” (cos2 ¢,N* + sin® ¢, U* + 2 cos ¢, sin gbONU)
2
+ €” [l/g (1 — 62) sin’ ¢, +2v, (1 — 62)005 ¢, sing, N +2v, (1 — €2> sin’ ¢OU]

2

But e* =

- SO we may write
1—e

2
e’ = e (cosgbON + sin ¢, U)

2 2
+ _ [Vs (1 — 62) sin® ¢, +2v, (1 — 62)cos¢0 sing N +2v, (1 — ez)sin2 ¢0U]
2
_ (Cos ¢, N +sin g, U)
2 2 2 2 2 2 2 9
+ v, (1 —e ) e’ sin” ¢, +2ve” cos ¢, sing N + 2v e sin” ¢ U (34)

Substituting equations (32) and (34) into equation (21) gives

2
E* + N> +U” + ¢" (cos¢0N + sing, U) —a’
+ Vg (1 — ¢’ sin’ gbo) — y§e2 sin’ ?, (1 — e2>
— 2w,e’ sing, cosd, N + 2v, (1 — ¢’ sin’ gbo) U
+ 1/562 sin’ ?, (1 — 62) + 21/062 sin ¢, cos ¢, N + 2V062 sin’ o, U =0

And simplifying and noting that V[Q) (1 — ¢ sin” (;50) = a’ gives the Cartesian equation of the

ellipsoid in local coordinates E,N, U as

2
B+ N+ U” + ¢ (cosg, N +sing, U) +2v,U =0 (35)

The origin of the E,N,U system is at P with coordinates ¢;,\, where the radius of

0770

. . . . a .
curvature of the prime vertical section is v, = — and the first and second

(1 — ¢’ sin’ ?, )5

2
€

1—¢°

eccentricities of the ellipsoid (a, f ) are obtained from e’ = f (2 —f ) and e =

Equation (35) is similar to an equation given by Bowring (1978, p. 363, equation (10) with
r=N y=-U, z=FE). Bowring does not give a derivation, but notes that his equation

is taken from Tobey (1928).
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CARTESIAN EQUATION OF THE NORMAL SECTION CURVE

The Cartesian equation of the normal section curve is developed as a function of local
Cartesian coordinates (,n,& which are rotated from the local E,N, U system by the

azimuth « of the normal section plane.

/ ellipsoid

~ equator

Figure 5: Normal section plane between P, and P, on the ellipsoid

Figure 5 shows a normal section plane having an azimuth « between P, and P, on the

ellipsoid and a local Cartesian coordinate system E,N,U with an origin at P .

Cartesian equations of the ellipsoid in geocentric and local coordinates given by equations
(1), (21) and (35) are:

2 2 2

- +y z

d

Yy + 2+ —a’ =0
. 2
E*+ N +U° +e’2(cos¢0N—|—sin¢0U) +2v,U =0

Consider a rotation of the F,N, U system about the U-axis by the azimuth « so that the
rotated N-axis lies in the normal section plane and the rotated E-axis is perpendicular to

the plane. Denote this rotated E,N,U system as (,n,¢ shown in Figure 6
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/ ellipsoid

equator

Figure 6: Rotated local coordinate system (,n,&

These two local Cartesian systems; E,N,U and (,n,£ are related by

N A n

cosaa —sina O||FE

¢
n|=|sina cosa O||N
13 0 0 1H|\U

d
@ Ul o
E cosa sina 0||C
E cos o ' N|=|-sina cosa 0ln
5 U 0 0 1|l¢
and we may write
E = (cosa + nsina; E? = ®cos” a + n* sin® a + 2(n cos asin o
N =ncosa —(sina; N? = *sin® a 4+ n° cos” a — 2(n cos o sin o
Uzg U2:§2

giving

E2+N2+U2:C2+n2+§2
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Substituting equations (36) and (37) into equation (35) gives

CHn+&+e”? <—Csinacos¢0 + 1) cos o cos ¢, + §sin¢0)2 +2w, =0 (38)

This is the Cartesian equation of an ellipsoid where the local Cartesian coordinates (,n,&
have an origin at P, (gbo,)\o) on the ellipsoid (a, f) with the &-axis in the direction of the
outward normal at P, ; the £-n plane is coincident with the normal section plane making
an angle o with the meridian plane of P ; and the £-¢ plane is perpendicular to the
normal section plane. As before the radius of curvature of the prime vertical section is

v,o= a — and the first and second eccentricities of the ellipsoid are obtained

(1 — e’ sin’ ¢0)5

2
€

1—¢*

from e’ :f(2—f) and e =

Setting ¢ = 0 in equation (38) will give the equation of the normal section plane as

n+& +e” (n cosacos @, + £sin g, )2 +2,6=0 (39)

Expanding equation (39) gives
n’ + n’e’”® cos® a cos’ o, + £ + e sin’ o, + 2née’” cos a cos ¢, sing, +2v,§ =0

which can be simplified to

€1+ %)+ 2engh + 1 (14 5*) + 20,6 = 0 (40)

where g and h are constants of the normal section and

e

sin ¢,
1—¢
: (41)

1—¢?

_ _
g=esing, =

_ ! _ :
h = €' cosacos g, = cos asin ¢

Equation (40) is similar to Clarke (1880, equation 14, p. 107) although Clarke's derivation

is different and very concise; taking only 11 lines of text and diagrams.
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POLAR EQUATION OF THE NORMAL SECTION CURVE

normal section curve

Figure 7: Normal section curve f (5,7])

The Cartesian equation of the normal section curve in local coordinates &,n,( = 0 is given
by equations (40) and (41) given the latitude ¢, of P, the ellipsoid constant e¢* and the

azimuth a of the normal section plane.

The equation of the curve in polar coordinates r,6; where ris a chord of the curve and 6

is the zenith distance of the chord, can be obtained in the following manner.

First, from Figure 7, we may write

& =rcosf
42
n=rsinf (42)

And second, we may re-arrange equation (40) as
2 2 2
€4+ (g€ +hn) =-2¢ (43)
Squaring equations (42) and adding gives
E+n' =r’cos’@+r’sin’ 0 =1’ (44)
and the third term in equation (43) can be expressed as
2 2
(gE + hn) = (grcosH + hrsin@)
= ¢°r’ cos’ 0 + h°r’ sin® 0 + 2gh 1’ sin 0 cos 0
=7’ (gcos@ —l—hsin9)2 (45)
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Substituting equations (44) and (45) into equation (43) and re-arranging gives the polar

equation of the normal section curve

. —21/0 cosf (46)

2
1—|—(gcos@—|—hsin9)

ARC LENGTH ALONG A NORMAL SECTION CURVE

To evaluate the arc length s along the normal section curve, consider the following

Figure 8: Small element of arc length along a normal section curve

In Figure 8, when A is small, then AM ~ r Af and the arc length As is approximated

by the chord AB and (As)2 o~ (r AQ)Q + (Ar>2 or

As = \/(mef +(ar)

2
2 Ar
= |(A0) |7 +|—
(aof e+ 3]
and
2
As_ |2 |Ar
N Af
. . As .
Taking the limit of A0 as A6 — 0 gives
As) d dr\
s s r
lim|—|=—=,[r" +|— 47
A%%[Ae] a0\ [d@] 47)
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and the arc length is given by

1
212

il g (48)

do

s:fds:():f% r’ +
0=0,

Referring to Figure 7 the n-axis is tangential to the normal section curve PP, at P and

the zenith distance 6 = GA = % and r =0. And when 8 = 03 = 02 then the chord

r = PP, and the arc length of the normal section curve is given by

D | =

6=0, 2
s = fds = f r? +[%] dao (49)

9="
2

7 is given by equation (46) with normal section constants g and h given by equations (41).

The derivative % can be obtained from equation (46) using the quotient rule for

differential calculus

v
dr _djul__do " do (50)
dg  do v’
where
u = —2v, cosb; v :1%—(‘(10039—|—hsin9)2
du dv (51)
0 = 2v,sin0; 0 :2(gcos9—i—hsin@)(hcos@—gsin@)

The arc length of the normal section curve between P, and P, can be found by evaluating

the integral given in equation (49). This integral cannot be solved analytically but may be

evaluated by a numerical integration technique known Romberg integration. Appendix 1
contains a development of the formula used in Romberg integration as well as a MATLAB

function demonstrating the algorithm.
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SOLVING THE DIRECT AND INVERSE PROBLEMS ON THE ELLIPSOID USING
NORMAL SECTIONS

The direct problem on an ellipsoid is: given latitude and longitude of P, azimuth « , of

the normal section PP, and the arc length s along the normal section curve; compute the

latitude and longitude of P,.

The inverse problem on an ellipsoid is: given the latitudes and longitudes of P, and P,

compute the azimuth a, and the arc length s along the normal section curve PP, .

Note 1. In general there are two normal section curves joining P and P,. We are only
dealing with the single normal section PP, (containing the normal at P — see
Figure 3) and so only the forward azimuth o, is given or computed. The reverse
azimuth a,, is the azimuth of the normal section PP, (containing the normal at

P, ) which is a different curve from normal section curve PF,.

Note 2. The usual meaning of: solving the direct and inverse problems on the ellipsoid
would imply the use of the geodesic; the unique curve defining the shortest
distance between two points. And solving these problems is usually done using
Bessel's method with Vincenty's equations (Deakin & Hunter 2007) or Pittman's
method (Deakin & Hunter 2007).

In the solutions of the direct and inverse problems set out in subsequent sections, the
following notation and relationships are used.
a, f semi-major axis length and flattening of ellipsoid.

b semi-minor axis length of the ellipsoid, b = a(1— f)

2

e’ eccentricity of ellipsoid squared, ¢’ = f(2 — f)

62
1—¢?

¢, A\ latitude and longitude on ellipsoid: ¢ measured 0° to +90° (north latitudes

e* 2nd-eccentricity of ellipsoid squared, e’> =

positive and south latitudes negative) and A measured 0° to +180° (east
longitudes positive and west longitudes negative).
s length of the normal section curve on the ellipsoid.
oy, azimuth of normal section PP,
a,, azimuth of normal section PP, (measured in the local horizon plane of P,)
a,, reverse azimuth; azimuth of normal section PP,
¢ chord PP,
0 zenith distance of the chord ¢
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x,y,z are geocentric Cartesian coordinates with an origin at the centre of the
ellipsoid and where the z-axis is coincident with the rotational axis of the
ellipsoid, the z-z plane is the Greenwich meridian plane and the z-y plane is
the equatorial plane of the ellipsoid.

x'y',z" are geocentric Cartesian coordinates with an origin at the centre of the
ellipsoid and where the z'-axis is coincident with the rotational axis of the
ellipsoid, the z'-z' plane is the meridian plane of P, and the z'-y' plane is the
equatorial plane of the ellipsoid. The z',y',2' system is rotated from the z,y,z
system by an angle A about the z-axis.

vectors a vector a defining the length and direction of a line from point 1 to point 2
is given by the formula a =ai+aj+ak where o, =z, -2, a, =y, —y,
and a, = z, — 7, are the vector components and i, j, and k are unit vectors in

the direction of the positive z, y, and z axes respectively. The components of

. N a ..
a unit vector a = H can be calculated by dividing each component by the
a

magnitude of the vector ‘a‘ = Jaf + aj. + aZ .

For vectors a and b the vector dot product is aeb = ‘aHb‘ cos where 0 is

the angle between the vectors. For unit vectors a «b = cosf. The vector

dot product is a scalar quantity S = ab. + ajbj +a,b,, hence for unit vectors
the angle between them is given by cosf = §'.

For vectors a and b the vector cross product is axb = ‘aHb‘ sindp where p

is a unit vector perpendicular to the plane containing a and b and in the
direction of a right-handed screw rotated from a to b. The result of a vector
cross product is another vector whose components are given by

axb= (a‘jbk — akbj)i — (aibk — akbi>j + (aibj — a],bi) k. The components of the
unit vector p are found by dividing each component of the cross product by
the magnitudes ‘a‘ and ‘b‘, and the sine of the angle between them. For unit

vectors Ax b = sinfdp and for perpendicular unit vectors a x b =p.
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THE DIRECT PROBLEM ON THE ELLIPSOID USING A NORMAL SECTION

The direct problem is: Given latitude and longitude of P, azimuth «a,, of the normal

section PP, and the arc length s along the normal section curve;

compute the latitude and longitude of P,.

With the ellipsoid constants a, f, e* and e’* and given ¢, A\, and s the problem may be

solved by the following sequence.

1. Compute v, the radius of curvature in the prime vertical plane of F from

a

(1 — ¢’ sin” ¢1);

VIZ

2. Compute the constants g and h of the normal section PP, from

g = ¢€'sin ?, - _gin ?,
V1—¢’
€

_ _
h = e’ cosa,, cos ¢, =

— cos v, sin ¢,
—e

3. Compute the chord ¢ = PP, and the zenith distance ¢ of the chord PP, by iteration

2

using the following sequence of operations until there is negligible change in the

computed chord distance

start Set the counter Kk =1 and set the chord c,=s

(i) Set the counter n =1 and set the zenith distance 0 = g

(ii) Use Newton-Raphson iteration to compute the zenith distance of the

chord using equation (46) rearranged as

f(@) =c+ c(g cos @ + hsin 0)2 —2v, cosf) = 0 and the iterative formula

0., =0 — % where f’ (0”> is the derivative of f (0n> and
2

f(@nr) =c +c (g cos 9" + hsin 9") —2v, cos Qn
f (971’) = 2c, (g cos + hsinf ) (h cos) —gsinf ) —2v, sinf

Note that the iteration for 6 is terminated when 6 and ¢ , differ by an
acceptably small value.

(iii) Compute the arc length s, using Romberg integration given a, f,¢,c,,,0
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(iv) Compute the small change in arc length ds =s_—s
(v) If ds < 0.000001 then go to end; else go (vi)

(vi) Increment k, compute new chord ¢, =¢,_, —ds and go to (i)

1

end Iteration for the chord ¢ = PP, and the zenith distance 6 of the chord

PP, is complete.

4. Compute the z,y,z coordinates of P, using

T, =V, COSQ COS\
Y, = v, Cos @ sin \
z, =V, (1 — eg)singbl
5.  Compute coordinate differences Az’,Ay’ Az’ in the z’,y,2" using

r_ . .

Az’ = —csinfcosa,, sing, + ccosfcos @,
I . .

Ay’ = csinfsina,

I . .
Az" = csinfcosa,, cos @, + ccossin ¢,

6. Rotate the z',y',2' coordinate differences to z,y,z coordinate differences by a rotation

of A about the z-axis using

Az = Aw'cos)\1 — Ay'sin)\1
Ay = Aa;'sin)\l + Ay'cos)\1

Az = A7
7. Compute z,y,z coordinates of P, using
T, =1, +Ax
Yy =y, + Ay
z, =z + Az

8. Compute latitude and longitude of P, by conversion z,y,z = ¢,A\,h using Bowring's
method.

Shown below is the output of a MATLAB function nsection_ direct.m that solves the
direct problem on the ellipsoid for normal sections.

The ellipsoid is the GRS80 ellipsoid and ¢,A for P are —10° and 110° respectively with
a,, = 140° 28'31.981931” and s = 5783228.924736 m. ¢,\ computed for P, are —45°

and 155° respectively.
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>> nsection_direct

/1177777777777 7/77/7/7/77/77/77/7777
// Normal Section: Direct Case //
/117777777777 /7/77/7/7//77/77/7/7777

ellipsoid parameters

a = 6378137.000000000
f = 1/298.257222101000
e2 = 6.694380022901e-003
ep2 = 6.694380022901e-003

Latitude P1
Longitude P1

-10 0 0.000000 (D M S)
110 0 0.000000 (D M S)

Azimuth of normal section P1-P2
Az12 = 140 28 31.981931 (D M S)

normal section distance P1-P2
S = 5783228.924736

chord distance P1-P2
c = 5586513.169887
iterations = 13

Zenith distance of chord at P1
zd = 116 2 20.450079 (D M S)
iterations = 5

Cartesian coordinates

X Y Z
P1 -2148527.045536 5903029.542697 -1100248.547700
p2 -4094327.792179 1909216.404490 -4487348.408756

dX = -1945800.746643
dy = -3993813.138207
dz = -3387099.861057

Latitude P2
Longitude P2

-45 0 0.000000 (D M S)
154 59 60.000000 (D M S)

>>
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THE INVERSE PROBLEM ON THE ELLIPSOID USING A NORMAL SECTION

The inverse problem is: Given latitudes and longitudes of F, and P, on the ellipsoid

compute the azimuth a;, of the normal section PP, and the arc

length s of the normal section curve.

With the ellipsoid constants a, f, ¢* and e’ and given ¢, and ¢,,), the problem may be

solved by the following sequence.

1. Compute v, and v, the radii of curvature in the prime vertical plane of P, and P,

from

a

UV =

(1 — e’ sin’ gzﬁ);

2. Compute the z,y,z coordinates of F, P,, P, and P, noting that P, is at the

3

intersection of the normal through P, and the rotational axis of the ellipsoid and P,
is at the intersection of the normal through P, and the rotational axis. Coordinate

of P, and P, are obtained from

T = 1/ COS P Cos A
Yy = v cos¢sin A
z= V(1—62>Sin¢

The z and y coordinates of P, and P, are zero and the z coordinate is obtained from

2z = —ve’sin¢
3. Compute the coordinate differences

Ax::vg—xl

Ay=1y, —y,
AZZZQ—Zl

4a. Compute vector ¢ = (Ax)i + (Ay)j + (Az)k in the direction of the chord PP,.

4b. Compute chord distance ¢ = ‘c‘ and the unit vector ¢ = ‘c_‘
c

5. Compute vector u = (ml)i + (yl)j + (zl — zg)k and the unit vector a = ﬁ in the
u

direction of the outward normal through P, .
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10.

11.

12.

13.

14.

Set the unit vector z=0i+4 0j+ 1k in the direction of the zaxis
Compute the zenith distance of the chord from the vector dot product
cos = u.c + ﬁjéj + ¢,
Compute the unit vector e perpendicular to the meridian plane of P, from vector
cross product (€ is in the direction of east)
Zu, — 2.0,

Cos @,

. zZxXu
e = =
cos ¢,

17 J i
cos ¢,

k

zjuk — zkuj]i _

cos @,

Compute the unit vector n in the meridian plane of P, from vector cross product.

(1 is in the direction of north)
i=tixé=(ié —aé )i—(ié —ie)i+(ie —ie )k

Compute the unit vector p perpendicular to the normal section PP, from vector

cross product. (p lies in the local horizon plane of P )

UG —

U
sin 6

~

ki

C.
j i

uc, —
L)

U
sin 0

>

p= = i— i+ k

uxce uj k —Ukcj
sin 6 0

sin
Compute the unit vector g in the local horizon plane of P, and in the direction of
the normal section PP, from vector cross product.

g =pxi=(pi, —pi)i—(pi, —pa)i+(pi, —pi)k

Compute the azimuth «, if the normal section PP, using vector dot products to

first compute angles a (between n and g) and § (between € and g) from

If 8>90° then a, = 360° —«;else o, =«

W

Compute the vector w = (iBl)i + (y1>j + (21 — z4)k and the unit vector w = (w is

u
in the direction of the line P P and lies in the meridian plane of P,).
Compute the angle v between W and ¢ from the vector dot product

cosy = we, + 121],6]. +w,e,
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15.

16.

17.

18.

19.

20.

Compute the angle § between w and u from the vector dot product (6 lies in the

meridian plane of P,)

cosd = WU, + Wi, +w, 1,

Compute the unit vector q perpendicular to the normal section PP, from vector

cross product

W X € w, ¢,

q =
sin

we, —w,c
l— ik sz
g

—w,
sin vy

sin 7y

Compute the unit vector h in the local horizon plane of P and in the direction of

the normal section P,P, from vector cross product.

h = qxu _ quAk _quaj i— 4,4, — 4,4,
cosd cosd cosd

Compute the azimuth 041/2 of the normal section P, P, using vector dot products to

first compute angles o (between n and h) and 8 (between é and h) from

COS ¥

D‘> ;~>

n,
eh

+1i, ii i h,
cos 3 é i ﬁ
If 3>90° then 041'2 = 360° — a; else a1’2 =«

Compute the small angle ¢ between the two normal section planes at P,

_ !
€= ‘0412 a12‘

Compute arc length s along the normal section curve PP, using Romberg

Integration.

Shown below is the output of a MATLAB function nsection_inverse.m that solves the

inverse problem on the ellipsoid for normal sections.

The ellipsoid is the GRS80 ellipsoid and ¢,A for P are —10° and 110° respectively and

¢, A for P, are —45° and 155° respectively.

Computed azimuths are «, = 140° 28'31.981931” and 041'2 = 140° 32"18.496009” , and

5§ =5783228.924736 m .
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>> nsection_inverse

/1177777777777 7/77/77/7//7/7/77/7/7777
// Normal Section: Inverse Case //
/1177777777777 7/77/77/7//7/7/77/7/7777

ellipsoid parameters

a = 6378137.000000000
f = 1/298.257222101000
e2 = 6.694380022901e-003
ep2 = 6.694380022901e-003

Latitude P1
Longitude P1

-10 O 0.000000 (D M S)
110 O 0.000000 (D M S)

Latitude P2
Longitude P2

-45 0 0.000000 (D M S)
155 0 0.000000 (D M S)

Cartesian coordinates

X Y Z
P1 -2148527.045536 5903029.542697 -1100248.547700
P2 -4094327.792180 1909216.404490 -4487348.408755

P3 0.000000 0.000000 7415.121539
P4 0.000000 0.000000 30242.470131
dX = -1945800.746645
dy = -3993813.138206
dz = -3387099.861055

Chord distance P1-P2
chord = 5586513.169886

Zenith distance of chord at P1
zd = 116 2 20.450079 (D M S)

Azimuth of normal section P1-P2
Az12 = 140 28 31.981931 (D M S)

Azimuth of normal section P2-P1
Az21 = 297 47 44.790362 (D M S)

Azimuth of normal section P2-P1 at P1
Az"12 = 140 32 18.496009 (D M S)

Angle between normal sections at P1
epsilon = 0 3 46.514078 (D M S)

ROMBERG INTEGRATION TABLE

5783427 .529966

5783278.294728 5783228.549649

5783241.249912 5783228.901640 5783228.925106

5783232.004951 5783228.923298 5783228.924742 5783228.924736
5783229.694723 5783228.924646 5783228.924736 5783228.924736

QA WNE

normal section distance P1-P2
s = 5783228.924736

>>
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DIFFERENCE IN LENGTH BETWEEN GEODESIC AND NORMAL SECTION

There are five curves of interest in geodesy; the geodesic, the normal section, the great

elliptic arc the loxodrome and the curve of alisnment.

The geodesic between P, and P, on an ellipsoid is the unique curve on the surface defining

the shortest distance; all other curves will be longer in length. The normal section curve

PP, is a plane curve created by the intersection of the normal section plane containing the

normal at P and also P, with the ellipsoid surface. And as we have shown there is the

other normal section curve P,P,. The curve of alignment is the locus of all points @) such

that the normal section plane at @ also contains the points P, and P,. The curve of

alignment is very close to a geodesic. The great elliptic arc is the plane curve created by

intersecting the plane containing P, P, and the centre O with the surface of the ellipsoid

and the loxodrome is the curve on the surface that cuts each meridian between P1 and P2

at a constant angle.

Approximate equations for the difference in length between the geodesic, the normal
section curve and the curve of alignment were developed by Clarke (1880, p. 133) and
Bowring (1972, p. 283) developed an approximate equation for the difference between the
geodesic and the great elliptic arc. Following Bowring (1972), let

s = geodesic length

L = normal section length

D = great elliptic length

S = curve of alignment length

then
4 4
I € ) 4 ) 2
—s _%5 i cos” ¢, sin” oy, cos” ay, + -+
4 2
D—s :S—45[%J sin® ¢, cos® ¢, sin’ ar, + -+ (52)
4 4
g - e S 4 . 9 2
—s —%S[E] cos” ¢, sin” o, cos” a, + -+

where R can be taken as the radius of curvature in the prime vertical at P . Now for a

given value of s, L —s will be a maximum if ¢, = 0° (P, on the equator) and o, = 45" in

1
: 4 <2 2
which case cos” ¢, sin” o, cos” ), = 1 thus
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4

(L—s)<——s|= (53)

For the GRS80 ellipsoid where f = 1/298.257222101, 2 = f(z - f), and for s = 1600000 m
and R = 6371000 m and equation (53) gives L —s < 0.001 m.

This can be verified by using two MATLAB functions: Vincenty Direct.m that computes
the direct case on the ellipsoid for the geodesic and nsection inverse.m that computes the
inverse case on the ellipsoid for the normal section. Suppose P has latitude and longitude
¢, =07, A =0° on the GRS80 ellipsoid and that the azimuth and distance of the geodesic
are o, = 45" and s =1600000 m respectively. The coordinates of P, are obtained from

Vincenty Direct.m as shown below. These values are then used in nsection_ direct.m to

compute the normal section azimuth and distance PP,.

The difference L —s = 0.000789 m .

>> Vincenty_Direct

L11777777777777777/777777/7777/77//7//77/77//77
// DIRECT CASE on ellipsoid: Vincenty"s method
L1177 1777777777777/777777/777/77/77//77/77//77

ellipsoid parameters
a 6378137.000000000

L = 1/298.257222101000

b = 6356752.314140356100
e2 = 6.694380022901e-003
ep2 = 6.739496775479e-003

Latitude & Longitude of P1
latP1 0O O 0.000000 (D MS)
lonP1 0O O 0.000000 (DM S)

Azimuth & Distance P1-P2
azl2 45 0 0.000000 (D M S)
s 1600000.000000

Latitude and Longitude of P2
latP2 = 10 10 33.913466 (D M S)
lonP2 = 10 16 16.528718 (D M S)

Reverse azimuth
alpha21 = 225 55 1.180693 (D M S)

>>

>> nsection_inverse

/1117777777777 7//7777////77/7//7777
// Normal Section: Inverse Case //
/1111777777777 77/77777////777//7777

ellipsoid parameters
a 6378137 .000000000

f = 1/298.257222101000
e2 = 6.694380022901e-003
ep2 = 6.694380022901e-003

Latitude P1
Longitude P1

0 0 0.000000 (D M S)
0 0 0.000000 (D M S)

Latitude P2
Longitude P2

10 10 33.913466 (D M S)
10 16 16.528718 (D M S)

Azimuth of normal section P1-P2
Az12 = 45 0 7.344646 (D M S)

ROMBERG INTEGRATION TABLE

1 1600010.313769

2 1600002.577521 1599999.998771

3 1600000.644877 1600000.000663 1600000.000789

4 1600000.161805 1600000.000781 1600000.000789
1600000.000789

normal section distance P1-P2
s = 1600000.000789

>>

Differences in length between the geodesic and normal section exceed 0.001 m for distances

greater than 1,600 km. At 5,800 km the difference is approximately 0.380 m.
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MATLAB FUNCTIONS

Shown below are two MATLAB functions nsection_ direct.m and nsection_inverse.m that

have been written to demonstrate the use of Romberg integration in the solution of the
direct and inverse case on the ellipsoid using normal sections. These functions call other

functions; DMS.m, Cart2Geo.m and romberg.m that are also shown.

MATLAB function nsection_ direct.m

function nsection_direct

% nsection_direct: This function computes the direct case for a normal
% section on the reference ellipsoid. That is, given the latitude and
% longitude of P1 and the azimuth of the normal section P1-P2 and distance
% along the normal section curve, compute the latitude and longitude of P2.

% Function: nsection_direct

% Usage: nsection_direct

%

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 23 September 2009

% Version 1.1 16 December 2009

%

% Purpose: nsection_inverse: This function computes the direct case for

% a normal section on the reference ellipsoid. That is, given the

% latitude and longitude of P1 and the azimuth of the normal section P1-P2
% and distance along the normal section curve, compute the latitude and

% longitude of P2.

% Functions required:

% |[D,M,S] = DMS(DecDeg)

% s = romberg(a,f,latl,Az12,zd)

% [lat,lon,h] = Cart2Geo(a,flat,X,Y,2)

% Variables:

% Azl1l2 - azimuth of normal section P1-P2

% a - semi-major axis of spheroid

% d2r - degree to radian conversion factor 57.29577951. ..
% e2 - eccentricity of ellipsoid squared

% eps - 2nd-eccentricity squared

% F - f = 1/flat is the flattening of ellipsoid

% flat - denominator of flattening of ellipsoid

% F zd - function of the zenith distance

% fdash_zd - derivative of the function of the zenith distance
% g,h - constants of normal section

% latl - latitude of P1 (radians)

% lat2 - latitude of P2 (radians)

% lonl - longitude of P1 (radians)

% lon2 - longitude of P2 (radians)

% nul - radius of curvature in prime vertical plane at P1
% pion2 - pi/2

% s - arc length of normal section P1-P2

% s2 - sin-squared(latitude)

% X,y - local variables in newton-Raphson iteration for zenith
% distance of chord P1-P2

% X1,Y1,Z1 - Cartesian coordinates of P1
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% X2,Y2,72 Cartesian coordinates of P2
% X3,Y3,Z3 Cartesian coordinates of P3
% X4,Y4,Z4 - Cartesian coordinates of P4
% zd zenith distance of chord

% Remarks:

% References:

% [1] Deakin, R. E., (2009), "The Normal Section Curve on an Ellipsoid",
% Lecture Notes, School of Mathematical and Geospatial Sciences,
% RMIT University, November 2009.

% Set degree to radian conversion factor and pi/2
d2r = 180/pi;
pion2 = pi/2;

% Set ellipsoid parameters
a = 6378137; % GRS80

flat = 298.257222101;

% Compute ellipsoid constants

f = 1/flat;

e2 = f*(2-1);

ep2 = e2/(1-e2);

% Set lat and long of P1 on ellipsoid
latl = -10/d2r;

lonl = 110/d2r;

% Set azimuth of normal section P1-P2 and arc length of normal section
Az12 = (140 + 28/60 + 31.981931/3600)/d2r;

s = 5783228.924736;

% [1] Compute radius of curvature in the prime vertical plane at P1
s2 sin(lat1)”2;

nul a/sqrt(l-e2*s2);

% [2] Compute constants g and h of the normal section P1-P2

ep = sqgrt(ep2);
g = ep*sin(latl);
h = ep*cos(latl)*cos(Az12);

% [3] Compute the chord and the zenith distance of the chord of the normal
% section curve P1-P2 by iteration.

% Set the chord equal to the arc length
Cc = s;
iter_1 = 1;
while 1
% Set the zenith distance to 90 degrees
zd = pion2;
% Compute the zenith distance of the chord using Newton-Raphson iteration
iter 2 = 1;
while 1
g*cos(zd)+h*sin(zd);
h*cos(zd)-g*sin(zd);
~ zd = ct+c*x*x+2*nul*cos(zd);
fdash_zd = 2*c*x*y-2*nul*sin(zd);
new_zd = zd-(f_zd/fdash_zd);
if abs(new_zd - zd) < le-15
break;

=< X

end
zd = new_zd;
if iter 2 > 10
fprintf("lteration for zenith distance failed to converge after 10
iterations”);
break;
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end
iter 2 = iter_ 2 + 1;
end;
% Compute normal section arc length for zenith distance
s _new = romberg(a,f,latl,Az12,zd);
ds = s_new-s;
if abs(ds) < le-6
break;
end
cC =c - ds;
if iter 1 > 15
fprintf("lteration for chord distance failed to converge after 15 iterations®);
break;
end
iter_ 1 = iter_1 + 1;
end;

% [4] Compute X,Y,Z Cartesian coordinates of Pl

X1 = nul*cos(latl)*cos(lonl);
Y1 = nul*cos(latl)*sin(lonl);
Z1 = nul*(1-e2)*sin(latl);

% [5] Compute X",Y",Z" coord differences with Z"-X" plane coincident with meridian
% plane of P1

dXp = -c*sin(zd)*cos(Az12)*sin(latl) + c*cos(zd)*cos(latl);
dYp = c*sin(zd)*sin(Az12);
dZp = c*sin(zd)*cos(Azl1l2)*cos(latl) + c*cos(zd)*sin(latl);

% [6] Rotate X",Y",Z" coord differences by lonl about Z"-axis

dX = dXp*cos(lonl) - dYp*sin(lonl);
dY = dXp*sin(lonl) + dYp*cos(lonl);
dz = dzp;

% [7] Compute X,Y,Z coords of P2
X2 = X1 + dX;

Y2 = Y1 + dY;

72 = 71 + dZ;

% [8] Compute lat, lon and ellipsoidal height of P2 using Bowring"s method
[lat2,1on2,h2] = Cart2Geo(a,flat,X2,Y2,Z2);

fprintf("\n/////////7////7//7/77//777/777777777);
fprintf("\n// Normal Section: Direct Case //%);
fprintf("\n//////////////7//7/7/777/7/77/77777777);
fprintf("\n\nellipsoid parameters”);

fprintf("\na = %18.9f",a);
fprintf("\nf = 1/%16.12F" ,flat);
fprintf("\ne2 = %20.12e",e2);
fprintf("\nep2 = %20.12e",e2);

% Print lat and lon of P1
[D,M,S] = DMS(latl*d2r);
ifD==024&& latl <0
fprintf(*\n\nLatitude P1
else
fprintf(*\n\nLatitude P1
end
[D,M,S] = DMS(lonl*d2r);
ifD==024&& lonl <O
fprintf("\nLongitude P1
else
fprintf("\nLongitude P1 = %4d %2d %9.6f (D M S)",D,M,S);
end

-0 %2d %9.6F (D M S)",M,S);

%4d %2d %9.6F (D M S)",D,M,S);

-0 %2d %9.6F (D M S)*",M,S);

% Print azimuth of normal section
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fprintf("\n\nAzimuth of normal section P1-P2%);

[D,M,S] = DMS(Az12*d2r);

fprintf("\nAz12 = %3d %2d %9.6F (D M S)",D,M,S);

% Print normal section distance P1-P2
fprintf("\n\nnormal section distance P1-P2%);

fprintf("\ns = %15.6F",s);

% Print chord distance P1-P2

fprintf("\n\nchord distance P1-P2%);

fprintf("*\nc = %15.6f",c);

fprintf("\niterations = %4d",iter_1);

% Print zenith distance of chord at point 1
fprintf(*\n\nZenith distance of chord at P1%);

[D.M,S] = DMS(zd*d2r);

fprintf(*\nzd = %3d %2d %9.6F (D M S)*,D,M,S);
fprintf("\niterations = %4d",iter_2);

% Print Coordinate table

fprintf("\n\nCartesian coordinates”);

fprintf("\n X
fprintf("\nP1  %15.6F %15.6F
fprintf("\nP2  %15.6F %15.6F

fprintf("\ndX = %15.6F",dX);
fprintf("\ndY = %15.6F",dY);
fprintf("\ndzZ = %15.6f",d2);

% Print lat and lon of P2
[D,M,S] = DMS(lat2*d2r);
ifD==02¢&& lat2 < O
fprintf("\n\nLatitude P2
else
fprintf("\n\nLatitude P2
end
[D,M,S] = DMS(lon2*d2r);
ifD==02&& lon2 <0
fprintf("\nLongitude P2
else
fprintf("\nLongitude P2
end

fprintf("\n\n");
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%15.6F",X1,Y1,71);
%15.6F",X2,Y2,722);

-0 %2d %9.6F (D M S)".M,S);

%4d %2d %9.6F (D M S)",D,M,S);

-0 %2d %9.6F (D M S)*",M,S);

%4d %2d %9.6F (D M S)",D,M,S);
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MATLAB function nsection_inverse.m

f

unction nsection_inverse

nsection_inverse: This function computes the inverse case for a normal
section on the reference ellipsoid. That is, given the latitudes and
longitudes of two points on the ellipsoid, compute the azimuth and the
arc length of the normal section.

Function: nsection_inverse()
Usage: nsection_inverse

Author: R.E.Deakin,
School of Mathematical & Geospatial Sciences, RMIT University
GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.
email: rod.deakin@rmit.edu.au
Version 1.0 21 September 2009
Version 1.1 16 December 2009

Purpose: nsection_inverse: This function computes the inverse case for
a normal section on the reference ellipsoid. That is, given the
latitudes and longitudes of two points on the ellipsoid, compute the
azimuth and the arc length of the normal section.

Functions required:
[D,M,S] = DMS(DecDeq)

Variables:
alpha - angle in the local horizon plane measured from north
Az12 - azimuth of normal section P1-P2
Azdash12 - azimuth of normal section plane P2-P1 measured at Pl
Az21 - azimuth of normal section P2-P1
a - semi-major axis of spheroid
beta - angle in the local horizon plane measured from east
chord - chord distance between P1 and P2
ci,cj,ck - components of unit vector c in the direction of the chord
P1-pP2
delta - angle in the meridian plane of P1 between w and u vectors
diff - difference between successive value of integral in Romber
Integration
du,dv,dr - derivatives in Romberg Integration
dX,dy,dz - Cartesian components of chord between between P1 and P2
d2r - degree to radian conversion factor 57.29577951. ..
ei,ej,ek - components of unit vector e in the direction of east in
local horizon system
epsilon - small angle between azimuths of normal section planes
ep2 - 2nd-eccentricity squared
e2 - 1st-eccentricity squared
T - ¥ = 1/flat is the flattening of ellipsoid
finish - integer flag (1 or 0) to test for end of Romberg
Integration
first - Ffirst value in trapezoidal rule in Romberg Integration
flat - denominator of flattening of ellipsoid
gamma - angle between unit vectors w and c
g,h - constants of normal section curve
hi,hj,hk - components of unit vector h in the local horizon plane and
direction of the plane P1-P2-P4
Integral - value of integral from trapezoidal rule in Romberg
Integration
inc - interval width in trapezoidal rule
int - number of intervals in trapezoidal rule where int = 27k
and k = 1:m
3.k - integer counters in Romberg Integration
last - last value in trapezoidal rule in Romberg Integration
latl - latitude of P1 (radians)
lat2 - latitude of P2 (radians)
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dz2
pi

%
a
Tl

%
f
e2

ep

%

la
lo
la
lo

lonl - longitude of P1 (radians)

lon2 - longitude of P2 (radians)
m - maximum power of 2 to determine number of intervals in
trapezoidal rule

norm - length of vector
nul, nu2 - radii of curvature in prime vertical plane at P1 and P2
ni,nj,nk - components of unit vector n
pion2 - pi/2

qi,qj,gk - components of unit vector q perpendicular to plane

P1-P2-P4

r - polar coordinate in polar equation of normal section
S - n,n array of Integrals in Romberg Integration
sum - summation in trapezoidal rule
s2 - sin-squared(latitude)
ui,uj,uk - components of unit vector u
wi,wj ,wk - components of unit vector w
X,y - variables in Romberg Integration
X1,Y1,71 - Cartesian coordinates of P1
X2,Y2,722 - Cartesian coordinates of P2
X3,Y3,Z3 - Cartesian coordinates of P3
X4,Y4,74 - Cartesian coordinates of P4
zd - zenith distance of chord
Remarks:

P1 and P2 are two point on the ellipsoid and in general there are two
normal section curves between them. P3 is at the intersection of the
rotational axis of the ellipsoid and the normal through P1. P4 is at
the intersection of the rotational axis of the ellipsoid and the normal
through P2. The normal section P1-P2 is the plane P1-P2-P3. The normal
section P2-P1 is the plane P1-P2-P4 and since P3 and P4 are not
coincident (in general) then the two planes create two lines on the
ellipsoid and two lines on the local horizon plane at P1.

The necessary equations for the solution of the inverse problem (normal
sections) on the ellipsoid are described in [1]. The vector
manipulations to determine the difference between the two normal section
plane azimuths (measuered in the local horizon at P1) follows a vector
method of calculating azimuth given in [2].

This function uses Romberg Integration to compute the arc length along
the normal section curve. This technique of numerical integration is
described in detail in [1].

References:
[1] Deakin, R. E., (2009), "The Normal Section Curve on an Ellipsoid",
Lecture Notes, School of Mathematical and Geospatial Sciences,
RMIT University, November 2009.
[2] Deakin, R. E., (1988), "The Determination of the Instantaneous
Position of the NIMBUS-7 CZCS Satellite', Symposium on Remote
Sensing of the Coastal Zone, Queensland, 1988.

Degree to radian conversion factor
r 180/pi;
on2 pi/2;

Set ellipsoid parameters

= 6378137; % GRS80
at = 298.257222101;
Compute ellipsoid constants
= 1/flat;
= f~(2-1);
2 = e2/(1-e2);
Set lat and long of P1 and P2 on ellipsoid
tl = -10/d2r;
nl = 110/d2r;
t2 = -45/d2r;
n2 = 155/d2r;
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% [1] Compute radii of curvature in the prime vertical plane at P1 & P2
s

2 = sin(latl)”"2;

nul = a/sqrt(l-e2*s2);
s2 = sin(lat2)"2;

nu2 = a/sqrt(l-e2*s2);

% [2] Compute Cartesian coordinates of points P1, P2, P3 and P4
% Note that P3 is at the intesection of the normal through P1 and
% the rotational axis and P4 is at the intersection of the normal
% through P2 and the rotational axis.

X1 = nul*cos(latl)*cos(lonl);
Y1 = nul*cos(latl)*sin(lonl);
Z1 = nul*(1-e2)*sin(latl);

X2 = nu2*cos(lat2)*cos(lon2);
Y2 = nu2*cos(lat2)*sin(lon2);
Z2 = nu2*(1-e2)*sin(lat2);

X3 = 0;

Y3 = 0;

Z3 = -nul*e2*sin(latl);

X4 = 0;

Y4 = 0;

Z4 = -nu2*e2*sin(lat2);

% [3] Compute coordinate differences that are the components of the chord
% P1-P2

dX = X2 - X1;

dy = Y2 - Y1;

dz = 722 - 71;

% [4a] Compute the vector c in the direction of the chord between P1 and P2
ci = dX;

cj = dy;

ck = dz;

% [4b] Compute the chord distance and the unit vector c
chord = sqrt(ci*ci + cj*cj + ck*ck);

ci = ci/chord;
cj = cj/chord;
ck = ck/chord;

% [5] Compute the unit vector u in the direction of the normal through P1
ui = X1;

uj = Y1;

uk = Z1-7Z3;

norm = sgrt(ui*ui + uj*uj + uk*uk);

ui = ui/norm;

uj = uj/norm;

uk = uk/norm;

% [6] Set unit vector for the z-axis of ellipsoid
zi = 0;

zj = 0;

zk = 1;

% [7] Compute zenith distance of chord at P1 from dot product
zd = acos(ui*ci + uj*cj + uk*ck);

% [8] Compute unit vector e perpendicular to meridian plane using vector cross
% product e = (z x u)/cos(latl). e is in the direction of east.

ei = (zJ*uk - zk*uj)/cos(latl);
ej = -(zi*uk - zk*ui)/cos(latl);
ek = (zi*uj - zj*ui)/cos(latl);

% [9] Compute unit vector n in the meridian plane using vector cross
% product n = u x e. n is in the direction of north.
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ni = (uj*ek - uk*ej);
nj = -(ui*ek - uk*ei);
nk = (ui*ej - uj*ei);

% [10] Compute unit vector p perpendicular to normal section P1-P2 using
% vector cross product q = (u x c)/sin(zd)

pii = (uj*ck - uk*cj)/sin(zd);

pj = -(ui*ck - uk*ci)/sin(zd);

pk = (ui*cj - uj*ci)/sin(zd);

% [11] Compute unit vector g in the local horizon plane of P1 and in the
% direction of the normal section P1-P2 using vector cross product

% g=pXxXu

gi = (pj*uk - pk*uj);
g = -(pii*uk - pk*ui);
gk = (pii*uj - pj*ui);

% [12] Compute azimuth of normal section P1-P2-P3 using vector dot product
alpha = acos(ni*gi + nj*gj + nk*gk);
beta = acos(ei*gi + ej*gj + ek*gk);

if beta > pi/2

Az12 = 2*pi - alpha;
else

Az12 = alpha;
end

% [13] Compute unit vector w in direction of line P4-P1. w will lie in the
% meridian plane of P1.

wi = X1;

wj = Y1;

wk = Z1-74;

norm = sqrt(wi*wi + wj*wj + wk*wk);
wi = wi/norm;

wj = wj/norm;

wk = wk/norm;

% [14] Compute the angle gamma between unit vectors w and c using vector
% dot product gamma = acos(w . C)
gamma = acos(wi*ci + wj*cj + wk*ck);

% [15] Compute the angle delta between unit vectors w and u using vector
% dot product delta = acos(w . u)
delta = acos(wi*ui + wj*uj + wk*uk);

% [16] Compute unit vector g perpendicular to plane P2-P1-P4 using vector
% cross product g = (w x c)/sin(gamma)

gi = (wj*ck - wk*cj)/sin(gamma);
aj = -(wi*ck - wk*ci)/sin(gamma);
gk = (wi*cj - wj*ci)/sin(gamma);

% [17] Compute unit vector h in the direction of P2 and in the local horizon
% plane using vector cross product h = (g x u)/cos(delta)

hi = (qi*uk - gk*uj)/cos(delta);
hj = -(qi*uk - gk*ui)/cos(delta);
hk = (gi*uj - gj*ui)/cos(delta);

% [18] Compute azimuth of section P1-P2-P4 using vector dot product
alpha = acos(ni*hi + nj*hj + nk*hk);
beta = acos(ei*hi + ej*hj + ek*hk);
if beta > pi/2

Azdash12 = 2*pi - alpha;
else

Azdashl12 = alpha;
end

% [19] Compute angle between normal section planes at P1
epsilon = abs(Az12-Azdash12);
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% Compute normal section azimuth P2 to P1
numerator = dX*sin(lon2) - dY*cos(lon2);
denominator = dX*sin(lat2)*cos(lon2) + dY*sin(lat2)*sin(lon2) - dZ*cos(lat2);
Az21 = atan2(numerator,denominator);
if Az21 < 0
Az21 = 2*pi+Az21;
end

fprintf("\n////////////7/7//77/7/7/777/7/77/7/7/77777777);
fprintf("\n// Normal Section: Inverse Case //");
fprintf("\n////////////77/7//77/777//7/77/7/77777777);
fprintf("\n\nellipsoid parameters®);

fprintf("\na = %18.9f",a);
fprintf("\nf = 1/%16.12F",flat);
fprintf("\ne2 = %20.12e",e2);
fprintf("\nep2 = %20.12e",e2);

% Print lat and lon of Point 1
[D,M,S] = DMS(latl*d2r);
ifD==024&%& latl < 0
fprintf("\n\nLatitude P1
else
fprintf("\n\nLatitude P1
end
[D,M,S] = DMS(lonl1*d2r);
ifD==024&& lonl <O
fprintf("\nLongitude P1
else
fprintf("\nLongitude P1 = %4d %2d %9.6F (D M S)*,D,M,S);
end

-0 %2d %9.6F (D M S)",M,S);

%4d %2d %9.6F (D M S)",D,M,S);

-0 %2d %9.6F (D M S)",M,S);

% Print lat and lon of point 2
[D,M,S] = DMS(lat2*d2r);
ifD==024&& latl <0
fprintf(*\n\nLatitude P2
else
fprintf(*\n\nLatitude P2
end
[D,M,S] = DMS(lon2*d2r);
ifD==02&& lon2 <0
fprintf(*\nLongitude P2
else
fprintf("\nLongitude P2 = %4d %2d %9.6F (D M S)*,D,M,S);
end

-0 %2d %9.6F (D M S)",M,S);

%4d %2d %9.6F (D M S)*,D,M,S);

-0 %2d %9.6F (D M S)",M,S);

% Print Coordinate table

fprintf("\n\nCartesian coordinates”);

fprintf("\n X Y Z%);
fprintf("\nP1 %15.6F %15.6F %15.6F",X1,Y1,Z1);
fprintf("\nP2 %15.6F %15.6F %15.6F",X2,Y2,Z2);
fprintf("\nP3  %15.6F %15.6F %15.6F",X3,Y3,Z3);
fprintf("\nP4 %15.6F %15.6F %15.6F",X4,Y4,Z4);

fprintf("\ndX = %15.6F",dX);
fprintf("\ndY = %15.6F",dY);
fprintf("\ndZ = %15.6F",dz);

% Print chord distance 1-2
fprintf("\n\nChord distance P1-P2%);
fprintf("\nchord = %15.6Ff",chord);

% Print zenith distance of chord at point 1
fprintf("\n\nZenith distance of chord at P1%);
[D,M,S] = DMS(zd*d2r);

fprintf("\nzd = %3d %2d %9.6F (D M S)*,D,M,S);
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% Print azimuths of normal sections
fprintf("\n\nAzimuth of normal section P1-P2%);
[D,M,S] = DMS(Az12*d2r);

fprintf("\nAz12 = %3d %2d %9.6F (D M S)",D,M,S);

fprintf("\n\nAzimuth of normal section P2-P1%);
[D,M,S] = DMS(Az21*d2r);
fprintf("\nAz21 = %3d %2d %9.6Ff (D M S)*,D,M,S);

fprintf("\n\nAzimuth of normal section P2-P1 at P1%);
[D,M,S] = DMS(Azdash12*d2r);
fprintf("\nAz""12 = %3d %2d %9.6F (D M S)",D,M,S);

fprintf("\n\nAngle between normal sections at P1%);
[D,M,S] = DMS(epsilon*d2r);
fprintf("\nepsilon = %4d %2d %9.6F (D M S)",D,M,S);

% [20] Compute arc length of normal section using ROMBERG INTEGRATION
Ffprintf("\n\nROMBERG INTEGRATION TABLE");

% Compute constants of normal section curve P1-P2
ep = sqrt(ep2);
= ep*sin(latl);
= ep*cos(latl)*cos(Az12);

15;

zeros(m,m);
ish = 0;

k =1:m

int 27k ;

inc (zd-pion2)/int;

sum ;

for

= =3 TQ

in
or

o

pion2:inc:zd
g*cos(t)+h*sin(t);
h*cos(t)-g*sin(t);
-2*nul*cos(t);
1+X*X;
u/v;

2*nul*sin(t);
2*xX*y;
(v*du-u*dv)/(v*v);
y = sqrt(r*r + dr*dr);
sum = sum+2*y;

if t == pion2

first = y;

end

last = y;

cooao=< < XM I
=< Cc

end
sum = sum-First-last;
Integral = inc/2*sum;
S(k,1) = Integral;
fprintf("\n%d %15.6F",k,S(k,1));
for j = 2:k
S(k,J) = 1/(4"G-1)-D*(@ G -1)*S(K,J-1)-S(k-1,j-1));
fprintf(" %15.6F",S(K,j));
diff = abs(S(k,j-1)-S(k,j)):
if diff < le-6
finish = 1;
s = S(k,J);
break;
end
end
if finish ==
break;
end
end

% Print normal section distance P1-P2
fprintf("\n\nnormal section distance P1-P2%);
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fprintf("\ns = %15.6Ff",s);

fprintf("\n\n");

MATLAB function Cart2Geo.m

function [lat,lon,h] = Cart2Geo(a,flat,X,Y,2)

% [lat,lon,h] = Cart2Geo(a,flat,X,Y,2)

% Function computes the latitude (lat), longitude (lon) and height (h)
% of a point related to an ellipsoid defined by semi-major axis (@)

% and denominator of flattening (flat) given Cartesian coordinates

% X,Y,Z. Latitude and longitude are returned as radians.

% Function: Cart2Geo()

% Usage: [lat,lon,h] = Cart2Geo(a,flat,X,Y,Z2);

%

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 6 April 2006

% Version 1.1 20 August 2007

% Functions required:
% radii()

% Purpose:
% Function Cart2geo() will compute latitude, longitude
% (both in radians) and height of a point related to

% an ellipsoid defined by semi-major axis (a) and

% denominator of flattening (flat) given Cartesian coordinates
% X,Y,Z.

%

% Variables:

% a - semi-major axis of ellipsoid

% b - semi-minor axis of ellipsoid

% c - cos(psi)

% c3 - cos(psi) cubed

% e2 - 1st eccentricity squared

% ep2 - 2nd eccentricity squared

% f - Tlattening of ellipsoid

% flat - denominator of flattening f = 1/flat

% h - height above ellipsoid

% lat - latitude (radians)

% lon - longitude (radians)

% p - perpendicular distance from minor-axis of ellipsoid
% psi - parametric latitude (radians)

% rm - radius of curvature of meridian section of ellipsoid
% rp - radius of curvature of prime vertical section of ellipsoid
% S - sin(psi)

% s3 - sin(psi) cubed

%

% Remarks:

% This function uses Bowring"s method, see Ref [1].

% Bowring®"s method is also explained in Ref [2].

% References:
% [1] Bowring, B.R., 1976, "Transformation from spatial to

% geographical coordinates”™, Survey Review, Vol. XXIII,

% No. 181, pp. 323-327.

% [2] Gerdan, G.P. & Deakin, R.E., 1999, "Transforming Cartesian

% coordinates X,Y,Z to geogrpahical coordinates phi,lambda,h®, The
% Australian Surveyor, Vol. 44, No. 1, pp. 55-63, June 1999.
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% calculate flattening f and ellipsoid constants e2, ep2 and b

T = 1/flat;

e2 = f*(2-1);
ep2 = e2/(1-e2);
b =a*(1-f);

% compute 1st approximation of parametric latitude psi
p sgrt(X*X + Y*Y);
psi atan((Z/p)/(1-));

% compute latitude from Bowring"s equation

s = sin(psi);

s3 = s*s*s;

c = cos(psi);

c3 = c*c*c;

lat = atan((Z+b*ep2*s3)/(p-a*e2*c3));

% compute radii of curvature for the latitude
[rm,rp] = radii(a,flat,lat);

% compute longitude and height

lon = atan2(Y,X);
h = p/cos(lat) - rp;

function [D,M,S] = DMS(DecDeg)

% [D,M,S] = DMS(DecDeg) This function takes an angle in decimal degrees and returns

% Degrees, Minutes and Seconds

val = abs(DecDeg);
D = fix(val);
M = Ffix((val-D)*60);

S (val-D-M/60)*3600;
iT(DecDeg<0)
D = -D;
end
return

MATLAB function romberg.m

function s = romberg(a,f,latl,Az12,zd)

% s = romberg(a,f,lat,az,zd)

% This function cumputes the arc length of a normal section using Romberg

% Integration, a numerical integration technique using the trapezoidal rule
% and Richardson Extrapolation. The function requires ellipsoid parameters
% a (semi-major axis) and f (flattening of ellipsoid), latl (latitude of P1
% in radians), Az12 (azimuth of normal section plane P1-P2 in radians) and
% zd (zenith distance of the chord of the normal section arc P1-P2). The

% function returns the arc length s.

% Function: romberg

% Usage: s = romberg(a,f,latl,Az12,zd);

%

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 24 September 2009

%

% Purpose: This function cumputes the arc length of a normal section

% using Romberg Integration, a numerical integration technique using the
% trapezoidal rule and Richardson Extrapolation. The function requires
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% ellipsoid parameters a,f and latl (latitude of Pl in radians), Azl2
% (azimuth of normal section plane P1-P2 in radians) and zd (zenith

% distance of the chord of the normal section arc P1-P2).

% Functions required:

% Variables:

% Azl2 - azimuth of normal section P1-P2

% a - semi-major axis of spheroid

% chord - chord distance between P1 and P2

% d2r - degree to radian conversion factor 57.29577951. ..
% e2 - eccentricity of ellipsoid squared

% eps - 2nd-eccentricity squared

% F - f = 1/flat is the flattening of ellipsoid

% g,h - constants of normal section curve

% latl - latitude of P1 (radians)

% nul - radius of curvature in prime vertical plane at P1
% pion2 - pi/2

% S - array of normal section arc lengths

% s - arc length of normal section P1-P2

% s2 - sin-squared(latitude)

% zd - zenith distance of chord

% Remarks:

% References:

% [1] Deakin, R. E., (2009), "The Normal Section Curve on an Ellipsoid",
% Lecture Notes, School of Mathematical and Geospatial Sciences,
% RMIT University, November 2009.

% Degree to radian conversion factor
d2r = 180/pi;
pion2 = pi/2;

% Compute ellipsoid constants
e2 = f*(2-F);
ep2 = e2/(1-e2);

% Compute radius of curvature in the prime vertical plane at Pl
sin(latl)"2;
a/sqrt(l-e2*s2);

"
N
I

% Fprintf("\n\nROMBERG INTEGRATION TABLE");

% Compute constants of normal section curve P1-P2

ep = sqgrt(ep2);
g = ep*sin(latl);
h = ep*cos(latl)*cos(Az12);
% Set array of arc lengths
n = 15;
S = zeros(n,n);
finish = 0;
for k = 1:15
% set the number of intervals and the increment
int = 27°k;
inc = (zd-pion2)/int;
sum = 0;

% evaluate the integral using the Trapezoidal Rule

for t = pion2:inc:zd
X = g*cos(t)+h*sin(t);
y = h*cos(t)-g*sin(t);
u = -2*nul*cos(t);
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v = 1+X*X;

r = u/v;

du = 2*nul*sin(t);

dv = 2*x*y;

dr = (v*du-u*dv)/(v*v);

y = sqrt(r*r + dr*dr);
sum = sum+2*y;
if t == pion2
first = y;
end
last = y;
end
sum = sum-First-last;
Integral = inc/2*sum;
S(k,1) = Integral;
% fprintf("\n%d %15.6F",k,S(k,1));
% Use Richardson extrapolation

for j = 2:k
S(k.j) = 1/(4°G-1)-1)* (4 G-1)*S(k,j-1)-S(k-1,§-1));
% fprintf(" %15.6F",S(K,§));

diff = abs(S(k,j-1)-S(k,j));
if diff < le-6

finish = 1;
s = S(k.J):
break;
end
end
if finish == 1
break;
end

end
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APPENDIX 1: ROMBERG INTEGRATION

Romberg integration (Romberg 1955) is a numerical technique for evaluating a definite
integral and discussions of the technique can be found in most textbooks on numerical
analysis; e.g. Williams (1972). A concise treatment of the technique and a study of the
historical development of methods of integration (quadrature) can be found in Dutka
(1984). A development of Romberg's method — and the extrapolation formula that is at
the heart of it — is given below and is followed by a MATLAB function that demonstrates
the use of the technique.

Romberg integration is a method for estimating the numerical value of the definite integral

I= f f(z)de (54)

It is based on the trapezoidal rule — the simplest of the Newton-Cotes integration formula

for equally spaced data on the interval a,b

b

I:ff(:c)da::g(fo +2f +2f ++2f  +f)+HE (55)

a

f@ 4

ke
where
n is the number of intervals of width A,
h—
n

a . . . .
is the common interval width or spacing,

B =

Jos £ £+ are values of the function evaluated at = =|a, a +h, a +2h, ... |,

FE is the error term

When the function f (x) has continuous derivatives the error term F can be expressed as a

convergent power series and we may write

I_ff f +2f +2f, +--+2f 1+j;,)+E:T+f:ajh“ (56)

where a; are coefficients.
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As the error term FE is a convergent power series in h a technique known as Richardson

extrapolation” may be employed to improve the accuracy of the result.
Richardson extrapolation can be explained as follows.

Let the value of n be a power of 2; say 2" i.e., the number of intervals n = 2,4,8,16,...,2"

Denote an evaluation of the integral I given by equation (56) as

S, =T+> ah® =T+ah’+ah' +ah’+-- (57)

j=1

If the interval width is halved, then

1

2
= (p , 1
Sk+1,1:T+ZaJ[§] =T+a12—2h +a
=1

oy

1

4 [§

h +a32—6h + - (58)
The first term of the error series can be eliminated by taking suitable combinations of
equations (57) and (58); i.e., multiplying equation (58) by 4 and then subtracting equation

(57) will eliminate the first term of the error series

4h* 4h5
A5, =5, =4T =T +q, 2—4—h4 +a, Q—e—hﬁ 1.
< (apr
j=2

and

T — k+1,1 kl 2
3 Z 3

48 S a4
T s (59)
e 2%

The first term on the right-hand-side of equation (59) will be designated
45 =S

k41,1 k1
S =T 5

k2 3

and the leading error term is now of order h’.

' A technique named after Lewis Fry Richardson (1881-1953) a British applied mathematician, physicist,
meteorologist, psychologist and pacifist who developed the numerical methods used in weather forecasting
and also applied his mathematical techniques to the analysis of the causes and prevention of wars. He was
also a pioneer in the study of fractals. Richardson extrapolation is also known as Richardson's deferred

approach to the limit.
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Successive halvings of the interval will give a sequence of values S, ,5, ,5,,...,5,, and

each successive pair (Sm,52’1),(5271,83’1),... can be combined to give values 5272,8372,...; and

this next sequence can be combined in a similar manner to remove the leading error term

of order A'; and so on.
By using the formula

k=1234,...
j=234,5,...

1
T

(Mﬂgﬂ—smfj (60)

the process of Richardson extrapolation leads to a triangular sequence of columns with

error terms of increasing order.

—_
\V]
w
=~

16
32

3.1 32 S 3,3

W
AW N e |
n
n

95}
n
N
N

41 42 4,3 44

error term hz h4 h6 hs

The entries S, , in the second column have eliminated the terms involving h*, the entries

in the third column have eliminated the terms involving k', etc, and as the interval

2j
b— o . b— _
h = Q—ka the error term of the approximation Sk_j is of the order [ a] with each

successive value in a particular row converging more rapidly to the true value of the

integral.

Testing between particular values will determine when the process has converged to a

suitable result.
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MATLAB FUNCTION romberg test.m

This function uses Romberg Integration for the calculation of the integral f sec(x) dz
This integral has the known result f sec(x)dx = In|(tan g—i—%

MATLAB function romberg test.m

function romberg_test

% This function computes the numerical value of the integral of sec(x)

% which is known to equal In[tan(x/2+pi/4)].

% For x = 45 degrees the integral sec(x) = 0.881373587020.

% An integration table is produced that shows the convergence to the true
% value of the integral.

% Function: romberg_test

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 09 December 2009

%

% Purpose: This function computes the numerical value of the integral of

% sec(x) which is known to equal In[tan(xX/2+pi/4)].

% For x = 45 degrees the integral sec(x) = 0.881373587.

% An integration table is produced that shows the convergence to the true
% value of the integral.

% Variables:

% diff - difference between successive approximations of the integral
% d2r - degree to radian conversion factor 57.29577951. ..
% First - First value of f(X)

% Fx - value of f(X)

% h - interval width

% Integral - numerical value of integral from trapezoidal rule
% K,j - integer counters

% last - last value of f(X)

% m - maximum number of intervals

% n - number of intervals

% S - array of integral values

% sum - sum of function values

% X - the variable

% References:
% Williams, P. W., (1972), "Numerical Computation', Nelson, London.

% Degree to radian conversion factor
d2r = 180/pi;

fprintf("\n\nRomberg Integration Table for the integral of sec(x) for x = 45 degrees”);

% Set array of values S(k,j)

m = 15;

S = zeros(m,m);
finish = 0O;
for k = 1:m

% set the number of intervals and the increment
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end
fprintf("\n\n~");

n 27k ;
h 45/n;
sum = 0;

% evaluate the integral using the Trapezoidal Rule

for x = 0:h:45
x = 1/cos(x/d2r);
sum = sum+2*fx;

if x ==

first = fx;
end
last = fx;

end

sum = sum-first-last;
Integral = h/d2r/2*sum;
S(k,1) = Integral;

fprintf(\n%d %15.12F",k,S(k,1));

% Use Richardson extrapolation

for j = 2:k

S(k,J) = 1/(4"(-1)-1)*(4"(-1)*S(k,J-1)-S(k-1,3-1));

fprintf(" %15.12F,S(k,j));

diff = abs(S(k,j-1)-S(k,i));

if diff < le-12
finish = 1;
break;
end
end
if finish == 1
break;
end

MATLAB Command Window

>> help romberg_test

This function cumputes the numerical value of the integral of sec(x)
which is known to equal In[tan(x/2+pi/4)].-
r x = 45 degrees the integral sec(x) = 0.881373587020.

An integration table is produced that shows the convergence to the true
value of the integral.

Fo

>> romberg_test

R
1
2
3
4
5
6

>>

cNeoNoNoNoNe]

-899084147577

.885885914440 0.881486503395
.882507477613 0.881381332003
.881657432521 0.881374084157
.881444571861 0.881373618307
-881391334699 0.881373588978
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0.881374320577
0.881373600967
0.881373587251
0.881373587023

omberg Integration Table for the integral of sec(x) for x = 45 degrees

0.881373589544
0.881373587033 0.881373587023
0.881373587020 0.881373587020
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The output from the function Romberg test.m that is evaluating the integral

I = T:f? sec(x) dx

x=0°

is shown in the Romberg Integration Table and the elements are obtained as follows:

e For k=1, there are n = 2" =2 intervals (or strips) of width h where

h = b;a _A 0 22.50° and the integral I ~ g(fo +2f + j;) The function
f(a:) =secr = evaluated at x = 0°,22.5°,45° gives
COS T
h=1
J. = 1.082392200
J, = 1.414213562
and
225
S, =1= T[@ (1+2(1.082392200) + 1.414213562) = 0.899084148

e For k=2, there are n = 2" = 4 intervals (or strips) of width h where

_b—a 45 -0O°

h =11.25° and the integral [ ~ g(f;) +2f +2f, + f4) The function
n
f(ac) =secx = evaluated at =z = 0°,11.25°,22.5°,33.75°,45° gives
COS T
h=1
f =1.019591158
£, = 1.082392200
£, =1.202689774
f, = 1.414213562
and
11.25( =«
§ =I=—221" (1 +2(1.019...) +2(1.082...) + 2(1.202..) + 1.414...) — (.885885914
e 2 180

The element S, is obtained from equation (60)

5, =— (48, - 8,,) = l(4 x 0.885885914 — 0.899084148 ) = 0.881486503
, 4' 1 2,1 11 3
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e For k=3, there are n = 2" = 8 intervals (or strips) of width h = 5.625° and the

evaluated

integral I’:ﬁ(fo +2f +2f +--+2f —I—fs) The function f(x):seca::
2 CoS T

at = = 0°,5.625°,11.25°,...,39.375°,45° gives

f=1
f, = 1.004838572
f, =1.019591158

f, =1.293643567
f, = 1.414213562

and

. 5'225[ ”0 (14 2(1.004..) 4+ +2(1.293...) + 1.414....) = 0.882507478

The elements S,, and S, are obtained from equation (60)

5, =— (4'S,,~5,,) = l(4 x 0.882507478 — 0.885885914) = 0.881381333
5 4 _1 » ) 3
1 /., 1
Sy, = ) (4 53’2 — 52’2) = B(IG x 0.881381333 — 0.881486503) = 0.8813374322

And so on for increasing values of k

Testing between successive values Skijf and Skij can be used to determine when the

1

iterative procedure is terminated.
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